Search results

1 – 3 of 3
Article
Publication date: 4 April 2016

Huihuang Zhao, Jianzhen Chen, Shibiao Xu, Ying Wang and Zhijun Qiao

The purpose of this paper is to develop a compressive sensing (CS) algorithm for noisy solder joint imagery compression and recovery. A fast gradient-based compressive sensing…

Abstract

Purpose

The purpose of this paper is to develop a compressive sensing (CS) algorithm for noisy solder joint imagery compression and recovery. A fast gradient-based compressive sensing (FGbCS) approach is proposed based on the convex optimization. The proposed algorithm is able to improve performance in terms of peak signal noise ratio (PSNR) and computational cost.

Design/methodology/approach

Unlike traditional CS methods, the authors first transformed a noise solder joint image to a sparse signal by a discrete cosine transform (DCT), so that the reconstruction of noisy solder joint imagery is changed to a convex optimization problem. Then, a so-called gradient-based method is utilized for solving the problem. To improve the method efficiency, the authors assume the problem to be convex with the Lipschitz gradient through the replacement of an iteration parameter by the Lipschitz constant. Moreover, a FGbCS algorithm is proposed to recover the noisy solder joint imagery under different parameters.

Findings

Experiments reveal that the proposed algorithm can achieve better results on PNSR with fewer computational costs than classical algorithms like Orthogonal Matching Pursuit (OMP), Greedy Basis Pursuit (GBP), Subspace Pursuit (SP), Compressive Sampling Matching Pursuit (CoSaMP) and Iterative Re-weighted Least Squares (IRLS). Convergence of the proposed algorithm is with a faster rate O(k*k) instead of O(1/k).

Practical implications

This paper provides a novel methodology for the CS of noisy solder joint imagery, and the proposed algorithm can also be used in other imagery compression and recovery.

Originality/value

According to the CS theory, a sparse or compressible signal can be represented by a fewer number of bases than those required by the Nyquist theorem. The new development might provide some fundamental guidelines for noisy imagery compression and recovering.

Article
Publication date: 8 October 2020

Mingkang Zhang, Yongqiang Yang, Wentao Qin, Shibiao Wu, Jie Chen and Changhui Song

This study aims to focus on the optimized design and mechanical properties of gradient triply periodic minimal surface cellular structures manufactured by selective laser melting.

Abstract

Purpose

This study aims to focus on the optimized design and mechanical properties of gradient triply periodic minimal surface cellular structures manufactured by selective laser melting.

Design/methodology/approach

Uniform and gradient IWP and primitive cellular structures have been designed by the optimized function in MATLAB, and selective laser melting technology was applied to manufacture these cellular structures. Finite element analysis was applied to optimize the pinch-off problem, and compressive tests were carried out for the evaluation of mechanical properties of gradient cellular structures.

Findings

Finite element analysis shows that the elastic modulus of IWP increased as design parameter b increased, and then decreased when parameter b is higher than 5.5. The highest elastic modulus of primitive increased by 89.2% when parameter b is 6. The compressive behavior of gradient IWP and primitive shows a layer-by-layer way, and elastic modulus and first maximum compressive strength of gradient primitive are higher than that of gradient IWP. The effective energy absorption of gradient cellular structures increased as the average porosity decreased, and the effective energy absorption of gradient primitive is about twice than that of gradient IWP.

Originality/value

This paper presents an optimized design method for the pinch-off problem of gradient triply periodic minimal surface cellular structures.

Details

Rapid Prototyping Journal, vol. 26 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 3 August 2021

Jie Chen, Yongqiang Yang, Shibiao Wu, Mingkang Zhang, Shuzhen Mai, Changhui Song and Di Wang

In this paper, the mechanical properties and corrosion resistance of CoCr alloy fabricated by selective laser melting (SLM) were studied, and the changes of performance after…

Abstract

Purpose

In this paper, the mechanical properties and corrosion resistance of CoCr alloy fabricated by selective laser melting (SLM) were studied, and the changes of performance after porcelain sintering process were also analysed. This study is to point out the relationship between the microstructure, mechanical properties and corrosion resistance of CoCr alloys prepared by SLM after porcelain sintering process. In addition, the biosafety of the sintered CoCr alloy was evaluated.

Design/methodology/approach

The microscopic feature changes of CoCr alloy samples after porcelain sintering process were observed by DMI 5000 M inverted metallographic microscope and Nova Nano430 FE-SEM. Moreover, phase identification and determination were conducted by X-ray diffraction (XRD) using Smartlab X-ray diffractometer. The Vickers microhardness was measured on the HVS-30 microhardness tester, and tensile tests were carried out on a CM3505 electronic universal testing machine. The corrosion resistance was tested by a classical three-point electrode system electrochemical method, then the ion precipitation was measured by using an atomic absorption spectrometer of Z2000 7JQ8024.

Findings

The XRD results indicate that the transition of γ phase (FCC) to e phase (HCP) occurs during the porcelain sintering processing of CoCr alloy. Moreover, the Vickers microhardness of the upper surface and the side surface of the CoCr alloy sample was improved by more than 36%. In addition, the ultimate strength of CoCr alloy via porcelain sintering treatment was increase to 1,395.3 ± 53.0 MPa compared to 1,282.7 ± 10.1 MPa of unprocessed CoCr alloy. However, the corrosion resistance of CoCr alloy samples decreases after porcelain sintering process.

Originality/value

There are few studies on the relationship of microstructure, mechanical properties and corrosion resistance of CoCr alloys prepared by SLM after porcelain sintering process. In this study, the microstructure, mechanical properties and corrosion resistance of CoCr alloy after porcelain sintering process were studied, and the biosafety of the alloy was evaluated. The research found that it is feasible to apply CoCr alloy fabricated by SLM to dental medicine after porcelain sintering process.

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 3 of 3